试题详情
简答题考虑在序列A[1..n]中找最大最小元素的问题。一个分治算法描述如下:如果n≤2就直接求解。否则,将序列等分成两个子序列A[1..n/2]和A[n/2+1..n],分别找出这两子序列的最大最小元素x1,y1和x2,y2;然后据此求出A[1..n]的最大元素x=max{x1,x2}及最小元素y=min{y1,y2}。请给出该算法计算时间T(n)满足的递归方程,并解方程来确定算法的时间复杂度。假定n=2k(k为正整数)。
  • 算法时间复杂度满足如下递归方程:
  • 关注下方微信公众号,在线模考后查看

热门试题