试题详情
简答题什么是多光谱空间?什么是主成分变换?主成分变换的应用意义是什么?
  • 多光谱空间是一个n维坐标系,每一个坐标轴代表多波段图像的一个波段,坐标值表示该波段像元的灰度值,图像中的每个像元对应于坐标空间中的一个点。
    K-L变换又称为主成分变换(principalcomponentanalysis)或霍特林(Hotelling)变换。它的原理如下:对某一n个波段的多光谱图像实行一个线性变换,即对该多光谱图像组成的光谱空间X乘以一个线性变换矩阵A,产生一个新的光谱空间Y,即产生一幅新的n个波段的多光谱图像。其表达式为
    Y=AX
    式中:X为变换前多光谱空间的像元矢量;Y为变换后多光谱空间的像元矢量;A为一个n×n的线性变换矩阵。
    根据以上的分析可将K-L变换的应用归纳如下。
    (1)数据压缩。经过主成分变换,多光谱图像变成了新的主成分图像,像元的亮度值不再表示地物原来的光谱值。但变换后的前几个主分量包含了绝大部分的地物信息,在一些情况下几乎是100%,因此可以只取前几个主分量,既获得了绝大部分的地物信息,又减少了数据量,如TM图像,经主成分变换后可只取前3个主分量,波段数由7个减少到3个,数据量减少到43%,实现了数据压缩。
    (2)图像增强。主成分变换的前几个主分量包含了主要的地物信息,噪声相对较少;而随着信息量的逐渐减少,最后的主分量几乎全部是噪声信息(如MSS数据中的条纹)。因此,主成分变换突出了主要信息,抑制了噪声,达到了图像的目的。
    (3)分类前预处理。多波段图像的每个波段并不都是分类最好的信息源,因而分类前的一项重要工作就是特征选择,即减少分类的波段数并提高分类效果。主成变换即是特征选择最常用的方法。
  • 关注下方微信公众号,在线模考后查看

热门试题