试题详情
简答题三次数学危机分别发生在何时?主要内容是什么?是如何解决的?
  • 第一次数学危机:公元前六世纪,毕达哥拉斯悖论:无理数的发现。欧多克索斯的解决方式,是借助几何方法,避免直接出现无理数;无理数的使用在几何中是允许的,合法的,在代数中就是非法的,不合逻辑的。第二次数学危机:十七世纪,贝克莱悖论:“无穷小量究竟是否为0”的问题:无穷小量在当时实际应用而言,它必须既是0,又不是0。从形式逻辑而言,这无疑是一个矛盾。极限理论、实数理论和集合论三大理论的完善,微积分学坚实牢固基础的建立。第三次数学危机:十九世纪下半叶,罗素悖论:罗素构造了一个集合S:S由一切不是自身元素的集合所组成,康托尔集合论是有漏洞的。公理化集合系统的建立,成功排除了集合论中出现的悖论。
  • 关注下方微信公众号,在线模考后查看

热门试题