试题详情
- 简答题 设有一个信源,它产生0,1序列的信息。它在任意时间而且不论以前发生过什么符号,均按p(0)=0.4,p(1)=0.6的概率发出符号。 (1)试问这个信源是否是平稳的? (2)试计算及; (3)试计算H(X4)并写出X4信源中可能有的所有符号。
-
(1)是平稳信源。
(2)信源熵H(X)=-0.4log20.4-0.6log20.6=0.971比特/信源符号,H(X2)=2H(X)=1.942比特/信源符号,由题设知道这个信源是无记忆信源,因此条件熵和极限熵都等于信源熵。
(3)H(X4)=4×0.971=3.884比特/信源符号,
X4信源中可能的符号共16个。 关注下方微信公众号,在线模考后查看
热门试题
- 从大量统计资料知道,男性中红绿色盲的发病
- 考虑GF(2)上的下列生成矩阵
- 在认识论层次上研究信息的时候,必须同时考
- 单符号离散信源的自信息和信源熵都具有非负
- 1948年,美国数学家()发表了题为“通
- 设有一个无记忆信源发出符号A和B,已知,
- 证明I(X,Y)≥0在什么条件下等号成立
- 信源编码的和信道编码的目的是什么?
- 离散无记忆序列信源中平均每个符号的符号熵
- 考虑另一个几何分布的随机变量X,满足P(
- 设有一离散信道,其信道传递矩阵为 并设
- 对具有8个消息的单符号离散无记忆信源进行
- 简述Shannon第二定理(信道编码定理
- 信道疑义度(含糊度) H(X|Y)
- 人们研究信息论的目的是为了()、()、(
- 信源X的概率分布为P(X)={1/2,1
- 求下列码的生成多项式和最小距离: (1
- 考虑GF(2)上的下列生成矩阵
- 某一无记忆信源的符号集为{0,1},已知
- 一珍珠养殖场收获240颗外观及重量完全相