试题详情
简答题叙述用阿尔蒙多项式法估计外生变量有限分布滞后模型的方法步骤,对多项式的次数m有哪些限制,为什么?
  • 阿尔蒙多项式法的目的是消除多重共线性的影响。
    其基本原理:在有限分布滞后模型滞后长度s已知的情况下,滞后项系数有一取值结构,把它看成是相应滞后期i的函数。在以滞后期i为横轴、滞后系数取值为纵轴的坐标系中,如果这些滞后系数落在一条光滑曲线上,或近似落在一条光滑曲线上,则可以由一个关于i的次数较低的m次多项式很好地逼近,即:

    对于变换后的模型,在满足古典假定的条件下,可用最小二乘法进行估计。将估计的参数代入阿尔蒙多项式,就可求出原分布滞后模型参数的估计值。
    在实际应用中,阿尔蒙多项式的次数m通常取得较低,一般取2或3,很少超过4。
  • 关注下方微信公众号,在线模考后查看

热门试题