试题详情
简答题测度变量取值的离散程度有何意义?测度指标有哪些,各有什么特点?有了极差、平均差和标准差,为什么还要计算离散系数?
  • 意义:
    ⑴通过对变量取值之间离散程度的测定,可以反映出各个变量值之间的差异大小,从而也就可以反映分布中心指标对各个变量值代表性的高低。
    ⑵通过对变量取值之间离散程度的测定,可以大致反映变量次数分布密度曲线的形状。
    测度指标:
    ⑴极差,又称全距,是指一组变量值中最大值与最小值之差,用来表示变量的变动范围。它计算简单,意义明了。由于极差的确定只根据两个极端变量值计算,不受中间变量值的影响,所以不能全面反映变量值的差异情况。
    ⑵四分位全距,是指将一组由小到大排列的变量数列分成四等分,可得到三个分割点Q1、Q2、Q3,分别称为第一个、第二个、第三个四分位数;然后用第一个四分位数Q1减去第三个四分位数Q3所得差的绝对值
    Q.1-Q3
    ,即为四分位全距。它其实是指一组由小到大排列数据的中间50%数据的全距,所以它不像极差那么容易受极端变量值的影响,但仍然存在没有充分利用所有数据信息的缺点。
    ⑶平均差,是变量各个取值偏差绝对值的算术平均数。它反映了变量的各个取值离其算术平均数的平均距离。其意义明确,计算简单,但在运算上不方便。平均差的计算分为简单平均法和加权平均法两种。
    ⑷标准差,又称根方差,是变量的各个取值偏差平方的平均数的平方根。通过离差平方和的运算不但可以消除离差正负项的差别,而且强化了离差的信息,使其在数学性质上也有许多明显的优越性。标准差的计算方法分为简单平均法和加权平均法两种,即简单标准差和加权标准差。
    ⑸方差,标准差的平方称为方差。
    计算离散系统是因为:
    极差、平均差和标准差都是衡量变量各个取值之间绝对差异程度的指标,都具有一定的量纲。这些指标的数值大小不仅取决于变量各取值之间的差异程度,而且取决于变量取值水平即数量级的高低。显然,对于不同的变量,其变量值的绝对差异程度指标并不便于直接比较,这就需要在这些绝对差异指标的基础上构造出反映变量各取值之间的相对差异程度的无量纲指标。
    变异系数主要用于不同变量的各自取值之间差异程度的比较。例如,对于两个给定的变量,若要比较二者算术平均数对各自变量值一般水平代表性的高低,或比较二者各自内部变量值之间差异程度的大小,由于二变量的极差、平均差和标准差各自有不同的数量级和不同的量纲,难以直接对比,所以就需要计算各自的变异系数,用变异系数进行比较。
  • 关注下方微信公众号,在线模考后查看

热门试题