试题详情
简答题已知p:方程x2+mx+1=0有两个不等负实根。q:方程4x2+4(m-2)x+1=0无实根。若p或q为真,p且q为假。求实数m的取值范围。
  • 因为p或q为真,p且q为假,则必然p与q中有一真一假。分两种情况:p为真,q为假;q为真,p为假。
    (1)若p为真,则q为假。
    p为真,方程x2+mx+1=0有两个不等负实根成立,即△=m2-4>0,x+x=m<0,解得:m>2或m<-2,m>0。综上两式得到:m>2。
    q为假,方程4x2+4(m-2)x+1=0无实根不成立,即有实数根,△=16(m-2)2-16≥0,所以m≥3或m≤1。
    取交集得到,m≥3:
    (2)若q为真,则p为假。
    q为真,即方程4x2+4(m-2)x+1=0无实根成立,即△=16(m-2)2-16<0,所以1p为假,方程x2+mx+1=0有两个不等负实根不成立,即①无实根或有两个相等实根,△=m2-4≤0,或②有两个不等正实根,△=m2-4>0,x+x=-m>0。解得,①-2≤m≤2或②m<-2,所以m≤2。
    取交集得到:1综上所述m≥3或1
  • 关注下方微信公众号,在线模考后查看

热门试题